MakeItFrom.com
Menu (ESC)

EN 1.7706 Steel vs. SAE-AISI 1020 Steel

Both EN 1.7706 steel and SAE-AISI 1020 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7706 steel and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
17 to 28
Fatigue Strength, MPa 330
180 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 690
430 to 460
Tensile Strength: Yield (Proof), MPa 500
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 440
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.4
Embodied Energy, MJ/kg 32
18
Embodied Water, L/kg 57
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 670
150 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
15 to 16
Strength to Weight: Bending, points 22
16 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 20
13 to 14

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.18 to 0.23
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.7 to 97.1
99.08 to 99.52
Manganese (Mn), % 0.5 to 0.9
0.3 to 0.6
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Vanadium (V), % 0.2 to 0.3
0