MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. 6005 Aluminum

EN 1.7710 steel belongs to the iron alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
90 to 95
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 6.8 to 11
9.5 to 17
Fatigue Strength, MPa 500 to 620
55 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
190 to 310
Tensile Strength: Yield (Proof), MPa 800 to 1060
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 440
160
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 41
180 to 200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
54
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 57
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
77 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 33 to 38
20 to 32
Strength to Weight: Bending, points 27 to 30
28 to 38
Thermal Diffusivity, mm2/s 11
74 to 83
Thermal Shock Resistance, points 27 to 31
8.6 to 14

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 95.1 to 97
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.6 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.0
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0.6 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants