MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. 6060 Aluminum

EN 1.7710 steel belongs to the iron alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 6.8 to 11
9.0 to 16
Fatigue Strength, MPa 500 to 620
37 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
140 to 220
Tensile Strength: Yield (Proof), MPa 800 to 1060
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 440
160
Melting Completion (Liquidus), °C 1470
660
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 41
210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
54
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 57
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
37 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 33 to 38
14 to 23
Strength to Weight: Bending, points 27 to 30
22 to 30
Thermal Diffusivity, mm2/s 11
85
Thermal Shock Resistance, points 27 to 31
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 95.1 to 97
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0.6 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.8 to 1.0
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants