MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. CC381H Copper-nickel

EN 1.7710 steel belongs to the iron alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
91
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 6.8 to 11
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
52
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
380
Tensile Strength: Yield (Proof), MPa 800 to 1060
140

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 440
260
Melting Completion (Liquidus), °C 1470
1180
Melting Onset (Solidus), °C 1430
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
30
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
5.0
Embodied Energy, MJ/kg 30
73
Embodied Water, L/kg 57
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
60
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
68
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 38
12
Strength to Weight: Bending, points 27 to 30
13
Thermal Diffusivity, mm2/s 11
8.4
Thermal Shock Resistance, points 27 to 31
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.12 to 0.18
0 to 0.030
Chromium (Cr), % 1.3 to 1.8
0
Copper (Cu), % 0
64.5 to 69.9
Iron (Fe), % 95.1 to 97
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.6 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
29 to 31
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 0.5