MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. Grade Ti-Pd17 Titanium

EN 1.7710 steel belongs to the iron alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 11
22
Fatigue Strength, MPa 500 to 620
140
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
270
Tensile Strength: Yield (Proof), MPa 800 to 1060
190

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 440
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1430
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 41
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
36
Embodied Energy, MJ/kg 30
600
Embodied Water, L/kg 57
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
55
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 33 to 38
17
Strength to Weight: Bending, points 27 to 30
21
Thermal Diffusivity, mm2/s 11
8.8
Thermal Shock Resistance, points 27 to 31
21

Alloy Composition

Carbon (C), % 0.12 to 0.18
0 to 0.1
Chromium (Cr), % 1.3 to 1.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95.1 to 97
0 to 0.2
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.9 to 99.96
Vanadium (V), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.4