MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. C86300 Bronze

EN 1.7710 steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
250
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 11
14
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
850
Tensile Strength: Yield (Proof), MPa 800 to 1060
480

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 440
160
Melting Completion (Liquidus), °C 1470
920
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 41
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
3.0
Embodied Energy, MJ/kg 30
51
Embodied Water, L/kg 57
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 33 to 38
30
Strength to Weight: Bending, points 27 to 30
25
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 27 to 31
28

Alloy Composition

Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 95.1 to 97
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.6 to 1.0
2.5 to 5.0
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0