MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. C87500 Brass

EN 1.7710 steel belongs to the iron alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 11
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
460
Tensile Strength: Yield (Proof), MPa 800 to 1060
190

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1470
920
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
28
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 30
44
Embodied Water, L/kg 57
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
67
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
160
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 33 to 38
16
Strength to Weight: Bending, points 27 to 30
16
Thermal Diffusivity, mm2/s 11
8.3
Thermal Shock Resistance, points 27 to 31
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0
Copper (Cu), % 0
79 to 85
Iron (Fe), % 95.1 to 97
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.0
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
3.0 to 5.0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5