MakeItFrom.com
Menu (ESC)

EN 1.7710 Steel vs. C99300 Copper

EN 1.7710 steel belongs to the iron alloys classification, while C99300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7710 steel and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 320
200
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 11
2.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 930 to 1070
660
Tensile Strength: Yield (Proof), MPa 800 to 1060
380

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 440
250
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 41
43
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
35
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.2
4.5
Embodied Energy, MJ/kg 30
70
Embodied Water, L/kg 57
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 73 to 100
11
Resilience: Unit (Modulus of Resilience), kJ/m3 1680 to 2970
590
Stiffness to Weight: Axial, points 13
8.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 33 to 38
22
Strength to Weight: Bending, points 27 to 30
20
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 27 to 31
22

Alloy Composition

Aluminum (Al), % 0
10.7 to 11.5
Carbon (C), % 0.12 to 0.18
0
Chromium (Cr), % 1.3 to 1.8
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0
68.6 to 74.4
Iron (Fe), % 95.1 to 97
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.6 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.0
0
Nickel (Ni), % 0
13.5 to 16.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0 to 0.020
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Vanadium (V), % 0.15 to 0.25
0
Residuals, % 0
0 to 0.3