MakeItFrom.com
Menu (ESC)

EN 1.7711 Steel vs. S39277 Stainless Steel

Both EN 1.7711 steel and S39277 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7711 steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 280
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16 to 22
28
Fatigue Strength, MPa 290 to 520
480
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 440 to 570
600
Tensile Strength: Ultimate (UTS), MPa 690 to 930
930
Tensile Strength: Yield (Proof), MPa 400 to 800
660

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 33
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.3
4.2
Embodied Energy, MJ/kg 32
59
Embodied Water, L/kg 54
180

Common Calculations

PREN (Pitting Resistance) 2.9
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 140
240
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1690
1070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24 to 33
33
Strength to Weight: Bending, points 22 to 27
27
Thermal Diffusivity, mm2/s 8.9
4.2
Thermal Shock Resistance, points 24 to 32
26

Alloy Composition

Aluminum (Al), % 0 to 0.015
0
Carbon (C), % 0.36 to 0.44
0 to 0.025
Chromium (Cr), % 0.9 to 1.2
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 96 to 97.5
56.8 to 64.3
Manganese (Mn), % 0.45 to 0.85
0 to 0.8
Molybdenum (Mo), % 0.5 to 0.65
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2
Vanadium (V), % 0.25 to 0.35
0