MakeItFrom.com
Menu (ESC)

EN 1.7711 Steel vs. S44800 Stainless Steel

Both EN 1.7711 steel and S44800 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7711 steel and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 280
190
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16 to 22
23
Fatigue Strength, MPa 290 to 520
300
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
82
Shear Strength, MPa 440 to 570
370
Tensile Strength: Ultimate (UTS), MPa 690 to 930
590
Tensile Strength: Yield (Proof), MPa 400 to 800
450

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 33
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
3.8
Embodied Energy, MJ/kg 32
52
Embodied Water, L/kg 54
190

Common Calculations

PREN (Pitting Resistance) 2.9
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 1690
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24 to 33
21
Strength to Weight: Bending, points 22 to 27
20
Thermal Diffusivity, mm2/s 8.9
4.6
Thermal Shock Resistance, points 24 to 32
19

Alloy Composition

Aluminum (Al), % 0 to 0.015
0
Carbon (C), % 0.36 to 0.44
0 to 0.010
Chromium (Cr), % 0.9 to 1.2
28 to 30
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 96 to 97.5
62.6 to 66.5
Manganese (Mn), % 0.45 to 0.85
0 to 0.3
Molybdenum (Mo), % 0.5 to 0.65
3.5 to 4.2
Nickel (Ni), % 0
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0.25 to 0.35
0