MakeItFrom.com
Menu (ESC)

EN 1.7715 Steel vs. ACI-ASTM CD3MN Steel

Both EN 1.7715 steel and ACI-ASTM CD3MN steel are iron alloys. Both are furnished in the normalized and tempered condition. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7715 steel and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
29
Fatigue Strength, MPa 240
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 540
710
Tensile Strength: Yield (Proof), MPa 340
460

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1060
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.2
3.6
Embodied Energy, MJ/kg 30
50
Embodied Water, L/kg 52
160

Common Calculations

PREN (Pitting Resistance) 2.4
35
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
180
Resilience: Unit (Modulus of Resilience), kJ/m3 320
530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.1 to 0.15
0 to 0.030
Chromium (Cr), % 0.3 to 0.6
21 to 23.5
Copper (Cu), % 0 to 0.3
0 to 1.0
Iron (Fe), % 96.5 to 98.3
62.6 to 71.9
Manganese (Mn), % 0.4 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.5 to 0.7
2.5 to 3.5
Nickel (Ni), % 0 to 0.3
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Vanadium (V), % 0.22 to 0.28
0