MakeItFrom.com
Menu (ESC)

EN 1.7715 Steel vs. ASTM Grade LCA Steel

Both EN 1.7715 steel and ASTM grade LCA steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7715 steel and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
27
Fatigue Strength, MPa 240
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 540
500
Tensile Strength: Yield (Proof), MPa 340
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.4
Embodied Energy, MJ/kg 30
19
Embodied Water, L/kg 52
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.1 to 0.15
0 to 0.25
Chromium (Cr), % 0.3 to 0.6
0
Copper (Cu), % 0 to 0.3
0 to 0.3
Iron (Fe), % 96.5 to 98.3
96.9 to 100
Manganese (Mn), % 0.4 to 0.7
0 to 0.7
Molybdenum (Mo), % 0.5 to 0.7
0 to 0.2
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.045
Vanadium (V), % 0.22 to 0.28
0
Residuals, % 0
0 to 1.0