MakeItFrom.com
Menu (ESC)

EN 1.7715 Steel vs. EN 1.7367 Steel

Both EN 1.7715 steel and EN 1.7367 steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7715 steel and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
18
Fatigue Strength, MPa 240
310
Impact Strength: V-Notched Charpy, J 34
31
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 540
670
Tensile Strength: Yield (Proof), MPa 340
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
600
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.2
2.6
Embodied Energy, MJ/kg 30
37
Embodied Water, L/kg 52
88

Common Calculations

PREN (Pitting Resistance) 2.4
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.020
Carbon (C), % 0.1 to 0.15
0.080 to 0.12
Chromium (Cr), % 0.3 to 0.6
8.0 to 9.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.5 to 98.3
87.3 to 90.3
Manganese (Mn), % 0.4 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0.5 to 0.7
0.85 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0.2 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0.22 to 0.28
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010