MakeItFrom.com
Menu (ESC)

EN 1.7715 Steel vs. C85700 Brass

EN 1.7715 steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7715 steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 540
310
Tensile Strength: Yield (Proof), MPa 340
110

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 420
120
Melting Completion (Liquidus), °C 1470
940
Melting Onset (Solidus), °C 1430
910
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
84
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
25

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 30
47
Embodied Water, L/kg 52
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
41
Resilience: Unit (Modulus of Resilience), kJ/m3 320
59
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 11
27
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.8
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 0.3 to 0.6
0
Copper (Cu), % 0 to 0.3
58 to 64
Iron (Fe), % 96.5 to 98.3
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.5 to 0.7
0
Nickel (Ni), % 0 to 0.3
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.35
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0.22 to 0.28
0
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3