MakeItFrom.com
Menu (ESC)

EN 1.7725 Steel vs. 7049 Aluminum

EN 1.7725 steel belongs to the iron alloys classification, while 7049 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7725 steel and the bottom bar is 7049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250 to 300
140
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 14
6.2 to 7.0
Fatigue Strength, MPa 390 to 550
160 to 170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 830 to 1000
510 to 530
Tensile Strength: Yield (Proof), MPa 610 to 860
420 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 440
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 39
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
10
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 1.8
8.1
Embodied Energy, MJ/kg 24
140
Embodied Water, L/kg 54
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 130
31 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 980 to 1940
1270 to 1440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 29 to 35
46 to 47
Strength to Weight: Bending, points 25 to 28
46 to 47
Thermal Diffusivity, mm2/s 11
51
Thermal Shock Resistance, points 24 to 29
22 to 23

Alloy Composition

Aluminum (Al), % 0
85.7 to 89.5
Carbon (C), % 0.27 to 0.34
0
Chromium (Cr), % 1.3 to 1.7
0.1 to 0.22
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 95.7 to 97.5
0 to 0.35
Magnesium (Mg), % 0
2.0 to 2.9
Manganese (Mn), % 0.6 to 1.0
0 to 0.2
Molybdenum (Mo), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
7.2 to 8.2
Residuals, % 0
0 to 0.15

Comparable Variants