EN 1.7725 Steel vs. AISI 321 Stainless Steel
Both EN 1.7725 steel and AISI 321 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.7725 steel and the bottom bar is AISI 321 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 250 to 300 | |
170 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 14 | |
34 to 50 |
Fatigue Strength, MPa | 390 to 550 | |
220 to 270 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
77 |
Tensile Strength: Ultimate (UTS), MPa | 830 to 1000 | |
590 to 690 |
Tensile Strength: Yield (Proof), MPa | 610 to 860 | |
220 to 350 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
290 |
Maximum Temperature: Mechanical, °C | 440 | |
870 |
Melting Completion (Liquidus), °C | 1460 | |
1430 |
Melting Onset (Solidus), °C | 1420 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 39 | |
16 |
Thermal Expansion, µm/m-K | 13 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.4 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.9 | |
16 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
3.2 |
Embodied Energy, MJ/kg | 24 | |
45 |
Embodied Water, L/kg | 54 | |
140 |
Common Calculations
PREN (Pitting Resistance) | 2.8 | |
19 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 130 | |
190 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 980 to 1940 | |
130 to 310 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 29 to 35 | |
21 to 25 |
Strength to Weight: Bending, points | 25 to 28 | |
20 to 22 |
Thermal Diffusivity, mm2/s | 11 | |
4.1 |
Thermal Shock Resistance, points | 24 to 29 | |
13 to 15 |
Alloy Composition
Carbon (C), % | 0.27 to 0.34 | |
0 to 0.080 |
Chromium (Cr), % | 1.3 to 1.7 | |
17 to 19 |
Iron (Fe), % | 95.7 to 97.5 | |
65.3 to 74 |
Manganese (Mn), % | 0.6 to 1.0 | |
0 to 2.0 |
Molybdenum (Mo), % | 0.3 to 0.5 | |
0 |
Nickel (Ni), % | 0 | |
9.0 to 12 |
Nitrogen (N), % | 0 | |
0 to 0.1 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.6 | |
0 to 0.75 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0 to 0.7 |
Vanadium (V), % | 0.050 to 0.15 | |
0 |