MakeItFrom.com
Menu (ESC)

EN 1.7725 Steel vs. C72150 Copper-nickel

EN 1.7725 steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7725 steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250 to 300
99
Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 14
29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
55
Tensile Strength: Ultimate (UTS), MPa 830 to 1000
490
Tensile Strength: Yield (Proof), MPa 610 to 860
210

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
600
Melting Completion (Liquidus), °C 1460
1210
Melting Onset (Solidus), °C 1420
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
6.1
Embodied Energy, MJ/kg 24
88
Embodied Water, L/kg 54
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 980 to 1940
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 29 to 35
15
Strength to Weight: Bending, points 25 to 28
15
Thermal Diffusivity, mm2/s 11
6.0
Thermal Shock Resistance, points 24 to 29
18

Alloy Composition

Carbon (C), % 0.27 to 0.34
0 to 0.1
Chromium (Cr), % 1.3 to 1.7
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 95.7 to 97.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 1.0
0 to 0.050
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 0
43 to 46
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5