MakeItFrom.com
Menu (ESC)

EN 1.7729 Steel vs. 3102 Aluminum

EN 1.7729 steel belongs to the iron alloys classification, while 3102 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7729 steel and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 17
23 to 28
Fatigue Strength, MPa 500
31 to 34
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 560
58 to 65
Tensile Strength: Ultimate (UTS), MPa 910
92 to 100
Tensile Strength: Yield (Proof), MPa 750
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 430
180
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
230
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
56
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
190

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 59
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1500
5.8 to 8.3
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 32
9.4 to 10
Strength to Weight: Bending, points 27
17 to 18
Thermal Diffusivity, mm2/s 11
92
Thermal Shock Resistance, points 27
4.1 to 4.4

Alloy Composition

Aluminum (Al), % 0.015 to 0.080
97.9 to 99.95
Arsenic (As), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 94.8 to 97
0 to 0.7
Manganese (Mn), % 0.35 to 0.75
0.050 to 0.4
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0 to 0.020
0
Titanium (Ti), % 0.070 to 0.15
0 to 0.1
Vanadium (V), % 0.6 to 0.8
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15