MakeItFrom.com
Menu (ESC)

EN 1.7729 Steel vs. CC482K Bronze

EN 1.7729 steel belongs to the iron alloys classification, while CC482K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7729 steel and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
99
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
5.6
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 910
300
Tensile Strength: Yield (Proof), MPa 750
160

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1430
860
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 40
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
36
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.3
3.8
Embodied Energy, MJ/kg 49
62
Embodied Water, L/kg 59
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
14
Resilience: Unit (Modulus of Resilience), kJ/m3 1500
120
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 32
9.5
Strength to Weight: Bending, points 27
11
Thermal Diffusivity, mm2/s 11
20
Thermal Shock Resistance, points 27
11

Alloy Composition

Aluminum (Al), % 0.015 to 0.080
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Arsenic (As), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.2
83.5 to 87
Iron (Fe), % 94.8 to 97
0 to 0.2
Lead (Pb), % 0
0.7 to 2.5
Manganese (Mn), % 0.35 to 0.75
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.2
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.4
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0 to 0.020
10.5 to 12.5
Titanium (Ti), % 0.070 to 0.15
0
Vanadium (V), % 0.6 to 0.8
0
Zinc (Zn), % 0
0 to 2.0