MakeItFrom.com
Menu (ESC)

EN 1.7729 Steel vs. C85800 Brass

EN 1.7729 steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7729 steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 910
380
Tensile Strength: Yield (Proof), MPa 750
210

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 430
120
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
84
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
22

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 49
47
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
48
Resilience: Unit (Modulus of Resilience), kJ/m3 1500
210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 32
13
Strength to Weight: Bending, points 27
15
Thermal Diffusivity, mm2/s 11
27
Thermal Shock Resistance, points 27
13

Alloy Composition

Aluminum (Al), % 0.015 to 0.080
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0 to 0.020
0 to 0.050
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0.17 to 0.23
0
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.2
57 to 69
Iron (Fe), % 94.8 to 97
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0.35 to 0.75
0 to 0.25
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.2
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.25
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0 to 0.020
0 to 1.5
Titanium (Ti), % 0.070 to 0.15
0
Vanadium (V), % 0.6 to 0.8
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3