MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. 2017 Aluminum

EN 1.7767 steel belongs to the iron alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 20
12 to 18
Fatigue Strength, MPa 320 to 340
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 420 to 430
130 to 260
Tensile Strength: Ultimate (UTS), MPa 670 to 690
190 to 430
Tensile Strength: Yield (Proof), MPa 460 to 500
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 480
190
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 64
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
41 to 470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24
17 to 40
Strength to Weight: Bending, points 22
24 to 42
Thermal Diffusivity, mm2/s 11
56
Thermal Shock Resistance, points 19 to 20
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0 to 0.1
Copper (Cu), % 0 to 0.25
3.5 to 4.5
Iron (Fe), % 93.8 to 95.8
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.3 to 0.6
0.4 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0.2 to 0.8
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.030
0 to 0.15
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15