EN 1.7767 Steel vs. AISI 301LN Stainless Steel
Both EN 1.7767 steel and AISI 301LN stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is AISI 301LN stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 200 to 210 | |
210 to 320 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 20 | |
23 to 51 |
Fatigue Strength, MPa | 320 to 340 | |
270 to 520 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 74 | |
77 |
Shear Strength, MPa | 420 to 430 | |
450 to 670 |
Tensile Strength: Ultimate (UTS), MPa | 670 to 690 | |
630 to 1060 |
Tensile Strength: Yield (Proof), MPa | 460 to 500 | |
270 to 770 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
280 |
Maximum Temperature: Mechanical, °C | 480 | |
890 |
Melting Completion (Liquidus), °C | 1470 | |
1430 |
Melting Onset (Solidus), °C | 1430 | |
1380 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 40 | |
15 |
Thermal Expansion, µm/m-K | 13 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.7 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.9 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 4.5 | |
13 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.4 | |
2.7 |
Embodied Energy, MJ/kg | 33 | |
39 |
Embodied Water, L/kg | 64 | |
130 |
Common Calculations
PREN (Pitting Resistance) | 6.4 | |
19 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 120 to 130 | |
220 to 290 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 570 to 650 | |
180 to 1520 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 24 | |
22 to 38 |
Strength to Weight: Bending, points | 22 | |
21 to 30 |
Thermal Diffusivity, mm2/s | 11 | |
4.0 |
Thermal Shock Resistance, points | 19 to 20 | |
14 to 24 |
Alloy Composition
Carbon (C), % | 0.1 to 0.15 | |
0 to 0.030 |
Chromium (Cr), % | 2.8 to 3.3 | |
16 to 18 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 93.8 to 95.8 | |
70.7 to 77.9 |
Manganese (Mn), % | 0.3 to 0.6 | |
0 to 2.0 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 to 0.25 | |
6.0 to 8.0 |
Niobium (Nb), % | 0 to 0.070 | |
0 |
Nitrogen (N), % | 0 to 0.012 | |
0.070 to 0.2 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.15 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.030 |
Titanium (Ti), % | 0 to 0.030 | |
0 |
Vanadium (V), % | 0.2 to 0.3 | |
0 |