MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. AISI 316 Stainless Steel

Both EN 1.7767 steel and AISI 316 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
160 to 360
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
8.0 to 55
Fatigue Strength, MPa 320 to 340
210 to 430
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 420 to 430
350 to 690
Tensile Strength: Ultimate (UTS), MPa 670 to 690
520 to 1180
Tensile Strength: Yield (Proof), MPa 460 to 500
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 480
590
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
3.9
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 64
150

Common Calculations

PREN (Pitting Resistance) 6.4
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
130 to 1820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
18 to 41
Strength to Weight: Bending, points 22
18 to 31
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 19 to 20
11 to 26

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.080
Chromium (Cr), % 2.8 to 3.3
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
62 to 72
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
2.0 to 3.0
Nickel (Ni), % 0 to 0.25
10 to 14
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.75
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0