EN 1.7767 Steel vs. ASTM A229 Spring Steel
Both EN 1.7767 steel and ASTM A229 spring steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is ASTM A229 spring steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 200 to 210 | |
490 to 550 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 20 | |
14 |
Fatigue Strength, MPa | 320 to 340 | |
710 to 790 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 74 | |
72 |
Shear Strength, MPa | 420 to 430 | |
1020 to 1140 |
Tensile Strength: Ultimate (UTS), MPa | 670 to 690 | |
1690 to 1890 |
Tensile Strength: Yield (Proof), MPa | 460 to 500 | |
1100 to 1230 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 480 | |
400 |
Melting Completion (Liquidus), °C | 1470 | |
1450 |
Melting Onset (Solidus), °C | 1430 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 40 | |
50 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.7 | |
7.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.9 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 4.5 | |
1.8 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.4 | |
1.4 |
Embodied Energy, MJ/kg | 33 | |
19 |
Embodied Water, L/kg | 64 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 120 to 130 | |
200 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 570 to 650 | |
3260 to 4080 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 24 | |
60 to 67 |
Strength to Weight: Bending, points | 22 | |
40 to 43 |
Thermal Diffusivity, mm2/s | 11 | |
14 |
Thermal Shock Resistance, points | 19 to 20 | |
54 to 60 |
Alloy Composition
Carbon (C), % | 0.1 to 0.15 | |
0.55 to 0.85 |
Chromium (Cr), % | 2.8 to 3.3 | |
0 |
Copper (Cu), % | 0 to 0.25 | |
0 |
Iron (Fe), % | 93.8 to 95.8 | |
97.5 to 99 |
Manganese (Mn), % | 0.3 to 0.6 | |
0.3 to 1.2 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 to 0.25 | |
0 |
Niobium (Nb), % | 0 to 0.070 | |
0 |
Nitrogen (N), % | 0 to 0.012 | |
0 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.15 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.050 |
Titanium (Ti), % | 0 to 0.030 | |
0 |
Vanadium (V), % | 0.2 to 0.3 | |
0 |