MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. ASTM A387 Grade 22 Steel

Both EN 1.7767 steel and ASTM A387 grade 22 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
21
Fatigue Strength, MPa 320 to 340
160 to 240
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
74
Shear Strength, MPa 420 to 430
300 to 380
Tensile Strength: Ultimate (UTS), MPa 670 to 690
480 to 600
Tensile Strength: Yield (Proof), MPa 460 to 500
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 480
460
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
3.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.7
Embodied Energy, MJ/kg 33
23
Embodied Water, L/kg 64
58

Common Calculations

PREN (Pitting Resistance) 6.4
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
140 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
17 to 21
Strength to Weight: Bending, points 22
17 to 20
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 19 to 20
14 to 17

Alloy Composition

Carbon (C), % 0.1 to 0.15
0.050 to 0.15
Chromium (Cr), % 2.8 to 3.3
2.0 to 2.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
95.1 to 96.8
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.9 to 1.1
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0

Comparable Variants