MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. ASTM Grade LCC Steel

Both EN 1.7767 steel and ASTM grade LCC steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
25
Fatigue Strength, MPa 320 to 340
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 670 to 690
570
Tensile Strength: Yield (Proof), MPa 460 to 500
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 64
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 19 to 20
17

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.25
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
96.9 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0 to 0.0050
0 to 0.045
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 1.0