MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. AWS E430

Both EN 1.7767 steel and AWS E430 are iron alloys. They have 86% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is AWS E430.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Tensile Strength: Ultimate (UTS), MPa 670 to 690
500

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.2
Embodied Energy, MJ/kg 33
31
Embodied Water, L/kg 64
120

Common Calculations

PREN (Pitting Resistance) 6.4
18
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 19 to 20
13

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.1
Chromium (Cr), % 2.8 to 3.3
15 to 18
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 93.8 to 95.8
77.8 to 85
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.75
Nickel (Ni), % 0 to 0.25
0 to 0.6
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.9
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0