MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.0116 Steel

Both EN 1.7767 steel and EN 1.0116 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.0116 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
23
Fatigue Strength, MPa 320 to 340
140
Impact Strength: V-Notched Charpy, J 46
28
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420 to 430
240
Tensile Strength: Ultimate (UTS), MPa 670 to 690
380
Tensile Strength: Yield (Proof), MPa 460 to 500
200

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
2.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
19
Embodied Water, L/kg 64
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
72
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
13
Strength to Weight: Bending, points 22
15
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 19 to 20
12

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.17
Chromium (Cr), % 2.8 to 3.3
0 to 0.3
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
97.1 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.4
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.080
Nickel (Ni), % 0 to 0.25
0 to 0.3
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.55
Sulfur (S), % 0 to 0.0050
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0