MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.0434 Steel

Both EN 1.7767 steel and EN 1.0434 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
110 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
12 to 28
Fatigue Strength, MPa 320 to 340
190 to 300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420 to 430
280 to 330
Tensile Strength: Ultimate (UTS), MPa 670 to 690
390 to 540
Tensile Strength: Yield (Proof), MPa 460 to 500
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 64
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
170 to 540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
14 to 19
Strength to Weight: Bending, points 22
15 to 19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19 to 20
12 to 17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.1 to 0.15
0.15 to 0.19
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
98.8 to 99.18
Manganese (Mn), % 0.3 to 0.6
0.65 to 0.85
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0