MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.4057 Stainless Steel

Both EN 1.7767 steel and EN 1.4057 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
11 to 17
Fatigue Strength, MPa 320 to 340
320 to 430
Impact Strength: V-Notched Charpy, J 46
16 to 21
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 420 to 430
520 to 580
Tensile Strength: Ultimate (UTS), MPa 670 to 690
840 to 980
Tensile Strength: Yield (Proof), MPa 460 to 500
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 480
850
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
9.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.2
Embodied Energy, MJ/kg 33
32
Embodied Water, L/kg 64
120

Common Calculations

PREN (Pitting Resistance) 6.4
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
96 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
700 to 1610
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
30 to 35
Strength to Weight: Bending, points 22
26 to 28
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 19 to 20
30 to 35

Alloy Composition

Carbon (C), % 0.1 to 0.15
0.12 to 0.22
Chromium (Cr), % 2.8 to 3.3
15 to 17
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
77.7 to 83.4
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
1.5 to 2.5
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0