MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.4313 Stainless Steel

Both EN 1.7767 steel and EN 1.4313 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
12 to 17
Fatigue Strength, MPa 320 to 340
340 to 510
Impact Strength: V-Notched Charpy, J 46
55 to 70
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 420 to 430
460 to 600
Tensile Strength: Ultimate (UTS), MPa 670 to 690
750 to 1000
Tensile Strength: Yield (Proof), MPa 460 to 500
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 480
780
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
10
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.4
Embodied Energy, MJ/kg 33
34
Embodied Water, L/kg 64
110

Common Calculations

PREN (Pitting Resistance) 6.4
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
870 to 2100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
27 to 36
Strength to Weight: Bending, points 22
23 to 28
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 19 to 20
27 to 36

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.050
Chromium (Cr), % 2.8 to 3.3
12 to 14
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
78.5 to 84.2
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0.3 to 0.7
Nickel (Ni), % 0 to 0.25
3.5 to 4.5
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0 to 0.020
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0