MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.4597 Stainless Steel

Both EN 1.7767 steel and EN 1.4597 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
45
Fatigue Strength, MPa 320 to 340
300
Impact Strength: V-Notched Charpy, J 46
90
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 420 to 430
470
Tensile Strength: Ultimate (UTS), MPa 670 to 690
680
Tensile Strength: Yield (Proof), MPa 460 to 500
330

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 480
860
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
11
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.5
Embodied Energy, MJ/kg 33
36
Embodied Water, L/kg 64
140

Common Calculations

PREN (Pitting Resistance) 6.4
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
250
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 19 to 20
15

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.1
Chromium (Cr), % 2.8 to 3.3
15 to 18
Copper (Cu), % 0 to 0.25
2.0 to 3.5
Iron (Fe), % 93.8 to 95.8
63 to 76.4
Manganese (Mn), % 0.3 to 0.6
6.5 to 9.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 1.0
Nickel (Ni), % 0 to 0.25
0 to 3.0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0.1 to 0.3
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0