MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. EN 1.5525 Steel

Both EN 1.7767 steel and EN 1.5525 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
11 to 21
Fatigue Strength, MPa 320 to 340
210 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420 to 430
310 to 350
Tensile Strength: Ultimate (UTS), MPa 670 to 690
440 to 1440
Tensile Strength: Yield (Proof), MPa 460 to 500
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
50
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
19
Embodied Water, L/kg 64
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
240 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
16 to 51
Strength to Weight: Bending, points 22
16 to 36
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 19 to 20
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.1 to 0.15
0.18 to 0.23
Chromium (Cr), % 2.8 to 3.3
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 93.8 to 95.8
97.7 to 98.9
Manganese (Mn), % 0.3 to 0.6
0.9 to 1.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0