MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. Nickel 600

EN 1.7767 steel belongs to the iron alloys classification, while nickel 600 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
3.4 to 35
Fatigue Strength, MPa 320 to 340
220 to 300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
75
Shear Strength, MPa 420 to 430
430 to 570
Tensile Strength: Ultimate (UTS), MPa 670 to 690
650 to 990
Tensile Strength: Yield (Proof), MPa 460 to 500
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 480
1100
Melting Completion (Liquidus), °C 1470
1410
Melting Onset (Solidus), °C 1430
1350
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 40
14
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.4
9.0
Embodied Energy, MJ/kg 33
130
Embodied Water, L/kg 64
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 24
21 to 32
Strength to Weight: Bending, points 22
20 to 26
Thermal Diffusivity, mm2/s 11
3.6
Thermal Shock Resistance, points 19 to 20
19 to 29

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.15
Chromium (Cr), % 2.8 to 3.3
14 to 17
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 93.8 to 95.8
6.0 to 10
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
72 to 80
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0