MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. SAE-AISI 1055 Steel

Both EN 1.7767 steel and SAE-AISI 1055 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
11 to 14
Fatigue Strength, MPa 320 to 340
260 to 390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Shear Strength, MPa 420 to 430
440 to 450
Tensile Strength: Ultimate (UTS), MPa 670 to 690
730 to 750
Tensile Strength: Yield (Proof), MPa 460 to 500
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 480
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.4
Embodied Energy, MJ/kg 33
18
Embodied Water, L/kg 64
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
440 to 1070
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19 to 20
23 to 24

Alloy Composition

Carbon (C), % 0.1 to 0.15
0.5 to 0.6
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
98.4 to 98.9
Manganese (Mn), % 0.3 to 0.6
0.6 to 0.9
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0 to 0.0050
0 to 0.050
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.3
0