MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. N08810 Stainless Steel

Both EN 1.7767 steel and N08810 stainless steel are iron alloys. They have 49% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
33
Fatigue Strength, MPa 320 to 340
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 420 to 430
340
Tensile Strength: Ultimate (UTS), MPa 670 to 690
520
Tensile Strength: Yield (Proof), MPa 460 to 500
200

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 480
1100
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.4
5.3
Embodied Energy, MJ/kg 33
76
Embodied Water, L/kg 64
200

Common Calculations

PREN (Pitting Resistance) 6.4
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 19 to 20
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0.1 to 0.15
0.050 to 0.1
Chromium (Cr), % 2.8 to 3.3
19 to 23
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 93.8 to 95.8
39.5 to 50.7
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
30 to 35
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0.15 to 0.6
Vanadium (V), % 0.2 to 0.3
0