MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. S43037 Stainless Steel

Both EN 1.7767 steel and S43037 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
25
Fatigue Strength, MPa 320 to 340
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 420 to 430
260
Tensile Strength: Ultimate (UTS), MPa 670 to 690
410
Tensile Strength: Yield (Proof), MPa 460 to 500
230

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 480
880
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.3
Embodied Energy, MJ/kg 33
32
Embodied Water, L/kg 64
120

Common Calculations

PREN (Pitting Resistance) 6.4
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
88
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 19 to 20
14

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.030
Chromium (Cr), % 2.8 to 3.3
16 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
77.9 to 83.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0.1 to 1.0
Vanadium (V), % 0.2 to 0.3
0