MakeItFrom.com
Menu (ESC)

EN 1.7779 Steel vs. EN 1.1191 Steel

Both EN 1.7779 steel and EN 1.1191 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7779 steel and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
16 to 17
Fatigue Strength, MPa 430
210 to 290
Impact Strength: V-Notched Charpy, J 38
16 to 29
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 500
380 to 430
Tensile Strength: Ultimate (UTS), MPa 810
630 to 700
Tensile Strength: Yield (Proof), MPa 660
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 470
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 64
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
260 to 510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
22 to 25
Strength to Weight: Bending, points 25
21 to 22
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 23
20 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.17 to 0.23
0.42 to 0.5
Chromium (Cr), % 3.0 to 3.3
0 to 0.4
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.8 to 95.4
97.3 to 99.08
Manganese (Mn), % 0.3 to 0.5
0.5 to 0.8
Molybdenum (Mo), % 0.5 to 0.6
0 to 0.1
Nickel (Ni), % 0 to 0.3
0 to 0.4
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0.15 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Vanadium (V), % 0.45 to 0.55
0