MakeItFrom.com
Menu (ESC)

EN 1.8062 Steel vs. 2618A Aluminum

EN 1.8062 steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8062 steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 660 to 1910
440

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 420
230
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 43
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.4
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 49
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 24 to 69
41
Strength to Weight: Bending, points 22 to 44
44
Thermal Diffusivity, mm2/s 12
59
Thermal Shock Resistance, points 20 to 57
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0.42 to 0.5
0
Chromium (Cr), % 0.5 to 0.8
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 95.9 to 97.1
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.5 to 0.8
0 to 0.25
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0
0.8 to 1.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.3 to 1.7
0.15 to 0.25
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15