MakeItFrom.com
Menu (ESC)

EN 1.8152 Steel vs. 2218 Aluminum

EN 1.8152 steel belongs to the iron alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8152 steel and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 540
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 660 to 2010
330 to 430

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 410
220
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 47
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
11
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 1.8
8.2
Embodied Energy, MJ/kg 25
150
Embodied Water, L/kg 49
1130

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 24 to 72
30 to 39
Strength to Weight: Bending, points 22 to 46
34 to 41
Thermal Diffusivity, mm2/s 13
52
Thermal Shock Resistance, points 20 to 60
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Carbon (C), % 0.51 to 0.59
0
Chromium (Cr), % 0.5 to 0.8
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 96 to 97.2
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.5 to 0.8
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.2 to 1.6
0 to 0.9
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0.1 to 0.2
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15