MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. 1350 Aluminum

EN 1.8201 steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20
1.4 to 30
Fatigue Strength, MPa 310
24 to 50
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 390
44 to 110
Tensile Strength: Ultimate (UTS), MPa 630
68 to 190
Tensile Strength: Yield (Proof), MPa 450
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
170
Melting Completion (Liquidus), °C 1500
660
Melting Onset (Solidus), °C 1450
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.3
Embodied Energy, MJ/kg 36
160
Embodied Water, L/kg 59
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 530
4.4 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
7.0 to 19
Strength to Weight: Bending, points 20
14 to 27
Thermal Diffusivity, mm2/s 11
96
Thermal Shock Resistance, points 18
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0 to 0.030
99.5 to 100
Boron (B), % 0.0010 to 0.0060
0 to 0.050
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0 to 0.010
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 93.6 to 96.2
0 to 0.4
Manganese (Mn), % 0.1 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.020
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1