MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. 3105 Aluminum

EN 1.8201 steel belongs to the iron alloys classification, while 3105 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
29 to 67
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20
1.1 to 20
Fatigue Strength, MPa 310
39 to 95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 390
77 to 140
Tensile Strength: Ultimate (UTS), MPa 630
120 to 240
Tensile Strength: Yield (Proof), MPa 450
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1500
660
Melting Onset (Solidus), °C 1450
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
170
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
44
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 2.5
8.2
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 530
15 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
12 to 24
Strength to Weight: Bending, points 20
20 to 31
Thermal Diffusivity, mm2/s 11
68
Thermal Shock Resistance, points 18
5.2 to 11

Alloy Composition

Aluminum (Al), % 0 to 0.030
96 to 99.5
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0 to 0.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 93.6 to 96.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0.1 to 0.6
0.3 to 0.8
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.1
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0
0 to 0.15