MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. 5049 Aluminum

EN 1.8201 steel belongs to the iron alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20
2.0 to 18
Fatigue Strength, MPa 310
79 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 390
130 to 190
Tensile Strength: Ultimate (UTS), MPa 630
210 to 330
Tensile Strength: Yield (Proof), MPa 450
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
190
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1450
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.5
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 530
59 to 570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
22 to 34
Strength to Weight: Bending, points 20
29 to 39
Thermal Diffusivity, mm2/s 11
56
Thermal Shock Resistance, points 18
9.3 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.030
94.7 to 97.9
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 93.6 to 96.2
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0.1 to 0.6
0.5 to 1.1
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.1
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15