MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. 5254 Aluminum

EN 1.8201 steel belongs to the iron alloys classification, while 5254 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20
3.4 to 22
Fatigue Strength, MPa 310
110 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 390
150 to 200
Tensile Strength: Ultimate (UTS), MPa 630
240 to 350
Tensile Strength: Yield (Proof), MPa 450
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
190
Melting Completion (Liquidus), °C 1500
640
Melting Onset (Solidus), °C 1450
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.8
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 530
73 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
25 to 37
Strength to Weight: Bending, points 20
32 to 41
Thermal Diffusivity, mm2/s 11
52
Thermal Shock Resistance, points 18
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.030
94.4 to 96.8
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0.15 to 0.35
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 93.6 to 96.2
0 to 0.45
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0.1 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.050
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15