MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. ASTM Grade LCB Steel

Both EN 1.8201 steel and ASTM grade LCB steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
27
Fatigue Strength, MPa 310
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 630
540
Tensile Strength: Yield (Proof), MPa 450
270

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 450
400
Melting Completion (Liquidus), °C 1500
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 36
18
Embodied Water, L/kg 59
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 530
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.3
Chromium (Cr), % 1.9 to 2.6
0
Iron (Fe), % 93.6 to 96.2
97 to 100
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 1.0