MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. N08367 Stainless Steel

Both EN 1.8201 steel and N08367 stainless steel are iron alloys. They have 49% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is N08367 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
34
Fatigue Strength, MPa 310
280
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
80
Shear Strength, MPa 390
490
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 450
350

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 450
1100
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
33
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.5
6.2
Embodied Energy, MJ/kg 36
84
Embodied Water, L/kg 59
200

Common Calculations

PREN (Pitting Resistance) 5.7
46
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 530
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 1.9 to 2.6
20 to 22
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 93.6 to 96.2
41.4 to 50.3
Manganese (Mn), % 0.1 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.050 to 0.3
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0.18 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0