MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. N08800 Stainless Steel

Both EN 1.8201 steel and N08800 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
4.5 to 34
Fatigue Strength, MPa 310
150 to 390
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 390
340 to 580
Tensile Strength: Ultimate (UTS), MPa 630
500 to 1000
Tensile Strength: Yield (Proof), MPa 450
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 450
1100
Melting Completion (Liquidus), °C 1500
1390
Melting Onset (Solidus), °C 1450
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.5
5.3
Embodied Energy, MJ/kg 36
76
Embodied Water, L/kg 59
200

Common Calculations

PREN (Pitting Resistance) 5.7
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 530
96 to 1740
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
18 to 35
Strength to Weight: Bending, points 20
18 to 28
Thermal Diffusivity, mm2/s 11
3.0
Thermal Shock Resistance, points 18
13 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.030
0.15 to 0.6
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.1
Chromium (Cr), % 1.9 to 2.6
19 to 23
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 93.6 to 96.2
39.5 to 50.7
Manganese (Mn), % 0.1 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0
30 to 35
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.0050 to 0.060
0.15 to 0.6
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0