MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. S35500 Stainless Steel

Both EN 1.8201 steel and S35500 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
14
Fatigue Strength, MPa 310
690 to 730
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 390
810 to 910
Tensile Strength: Ultimate (UTS), MPa 630
1330 to 1490
Tensile Strength: Yield (Proof), MPa 450
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 450
870
Melting Completion (Liquidus), °C 1500
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.5
3.5
Embodied Energy, MJ/kg 36
47
Embodied Water, L/kg 59
130

Common Calculations

PREN (Pitting Resistance) 5.7
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 530
3610 to 4100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
47 to 53
Strength to Weight: Bending, points 20
34 to 37
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 18
44 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0.1 to 0.15
Chromium (Cr), % 1.9 to 2.6
15 to 16
Iron (Fe), % 93.6 to 96.2
73.2 to 77.7
Manganese (Mn), % 0.1 to 0.6
0.5 to 1.3
Molybdenum (Mo), % 0.050 to 0.3
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0.020 to 0.080
0.1 to 0.5
Nitrogen (N), % 0 to 0.015
0.070 to 0.13
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0