MakeItFrom.com
Menu (ESC)

EN 1.8503 Steel vs. AISI 410 Stainless Steel

Both EN 1.8503 steel and AISI 410 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8503 steel and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
16 to 22
Fatigue Strength, MPa 600
190 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 610
330 to 470
Tensile Strength: Ultimate (UTS), MPa 1000
520 to 770
Tensile Strength: Yield (Proof), MPa 910
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 440
710
Melting Completion (Liquidus), °C 1470
1530
Melting Onset (Solidus), °C 1420
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.3
1.9
Embodied Energy, MJ/kg 33
27
Embodied Water, L/kg 57
100

Common Calculations

PREN (Pitting Resistance) 3.7
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2200
210 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 35
19 to 28
Strength to Weight: Bending, points 28
19 to 24
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 29
18 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Carbon (C), % 0.16 to 0.24
0.080 to 0.15
Chromium (Cr), % 1.2 to 1.5
11.5 to 13.5
Iron (Fe), % 95.8 to 97.5
83.5 to 88.4
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.65 to 0.8
0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Vanadium (V), % 0.25 to 0.35
0