MakeItFrom.com
Menu (ESC)

EN 1.8503 Steel vs. EN 1.8875 Steel

Both EN 1.8503 steel and EN 1.8875 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8503 steel and the bottom bar is EN 1.8875 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
19
Fatigue Strength, MPa 600
340
Impact Strength: V-Notched Charpy, J 39
90
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 610
410
Tensile Strength: Ultimate (UTS), MPa 1000
660
Tensile Strength: Yield (Proof), MPa 910
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
420
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.3
3.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.8
Embodied Energy, MJ/kg 33
24
Embodied Water, L/kg 57
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2200
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 35
23
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 29
19

Alloy Composition

Aluminum (Al), % 0 to 0.3
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.16 to 0.24
0 to 0.18
Chromium (Cr), % 1.2 to 1.5
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 95.8 to 97.5
93.6 to 100
Manganese (Mn), % 0.4 to 0.8
0 to 1.7
Molybdenum (Mo), % 0.65 to 0.8
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.0080
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0.25 to 0.35
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15